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1. Introduction

The concept of a regenerative stochastic process has become an

Important tool in applied probability. From its theoretical origins

in work of DOEBLIN (1938) and SMITH (1955), it has grown to play a

central role in the analysis of, for example, queueing systems in

light traffic and simulation output analysis; see IGLEHAM (1971) and

CRANE and LEMOINE (1978).

In the Markov chain setting, regenerative analysis has simplified

many complicated analytical arguments associated with the limit theory

of such processes. A significant step in this direction occurred with

the recent papers by ATBEYA and NEY (1978) and NUMLIN (1978), who

showed that regenerative process theory is applicable to a

significantly larger class of Markov chains than previously known.

In this report, we shall investigate various properties of

discrete-time regenerative processes {Xn). We start, in Section 2,

by defining the concept of a regenerative stochastic process. In

contrast to many other treatments (e.g., qINLAR (1975)), we make no

requirement that regeneration times be stopping times with respect to

the process fields, or, In fact, that they even be measurable with

respect to the process. We also generalize the concept of a

regenerative process to allow =-dependence between regenerative

blocks; we call this class of processes weakly regenerative. This
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class turns out to be useful in treating general state space Markov

chains; see [191 and [201.

-In Section 3, ergodic theory for weakly regenerative processes is

investigated. We prove strong laws for partial sum processes, and

show that there exists an "ergodice measure, x,,which captures all the

.steady-state" information of the process (Xn). We also obtain

a.s. weak convergence for the empirical measure of a weakly regenera-

tive process, and show that the "renewal paradox" continues to hold in

this generalized setting.

Section 4 is concerned with construction of a stationary process

from the ergodic measure of Section 3. Total variation convergence of

the measures

n-1
SP{X .)/n

k-0

to % is studied, in the regenerative setting, in Section 5.

Furthermore, rates of convergence, in terms of the moments of the

inter-regeneration times, are obtained. These ideas are applied in

Section 6 where it is shown that all regenerative processes are strong

mixing, and that regenerative processes are uniformly strong mixing

(#-mixing) under a simple sufficient condition. These results allow

elementary proofs of some classical mixing results of DAVYDOV (1973)

for Markov chains, and improve the results in the sense that estimates

for the mixing constants can be obtained. Section 7 studies the
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central limit theorem (CLT) f:r weakly regenerative processes; this

result can be used to obtain a new CLT for Markov chains; see [201.

We also relate this CLT to a CLT for the corresponding stationary

process, constructed in Section 4.

Finally, in Section 8, we investigate the splitting property of

regeneration times (see Jacobsen (1974) for the definition of a split-

ting time) for a special class of Markov chains.,_ A regenerative

process is said to be strongly regenerative if the regeneration times

are measurable with respect to the o-field generated by the process.

For the class of Harkov chains considered, we are able to show that

all strong regeneration times are splitting times. This result allows

us to completely describe the strongly regenerative Markov chains in

the class, and shovs that when such a Markov chain is strongly regen-

erative, then the regeneration times can be chosen to be stopping

times with respect to the process fields.

2. Definitions and Preliminaries

Let {Xn: n > 0) be a stochastic process defined on a

probability space (0, G, P), and taking values in a measurable space

(E, E). A G-measurable random variable (r.v.) T: a + Z+ - (0,1,...)

is called a random time. For any two random times T1 ,T2  such that
T

T T2 , we define 1 to be the a-field generated by all events of

the form A n (T -T - k), where
2 1



1 +k-ET Ir~ I- X1 XT+... XT +k.

(2.1) DEFINITION. A process {Xn: n > 0} is said to be

regenerative if there exist random times 0 - TO < T1 < T2 <.. such

that:

I) the a-fields Rn FT  1 are independent, for n > 0,
: n

ii) the a-fields H are identically distributed for n > 1, in

the sense that

PMT . Z e B; -vn-k
n n

" P(( ' "" +kB B; - k)

for each B in the product a-field Ek - E x ... x E

(k times), where r n Tn+l-Tn"

The random times T1 , T2, ... are called regeneration time

for the process (Xn: n > 0). One desirable property of this

definition, in analogy with the case of independent and identically

distributed (i.i.d.) r.v.'s, is that the process {Zn: -- < n < 0)

inherits the regenerative property (with the obvious generalization of

(2.1) to time parameter set {k: -m < k < 0)), where Zn X -n.
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(2.2) PMOMlTION. The regenerative property js preserved =der time

reversal.

Proof. For the process (Zn), we consider the random times Sj

given by -Tj+I, and put So - 1. It is easily checked that the
S _-1 Tj -1

generating sets of PS Jre precisely those of F-T1J. This

s -1

immediately yields the conclusion that FsJ are independent for

j > 0, and identically distributed for j > 1. I

We remark that one of the classical definitions of a regenerative

process requires that the random times Tj be stopping times with.

respect to the family of increasing o-fields (1z: n > 0); see, for

example, 9INLhAR (1975), p. 298. Such a definition, in contrast to

ours, does not have the time reversal property. Furthermore, it is

clearly a limitation to require that the T be F measurable.

(2.3) EXAMPLE. Let {Zn: n > 0) be a finite state, irreducible

Markov chain on {0, 1, ... , m). Then, X - I{ 0 )(Zn) (IA(x) 1(0)

if x i A(x e A)) is a regenerative process under (2.1), and yet, in

general, there exist no F measurable regeneration times for X

As we shall see in Section 5, m easurability of the T 's has

some important consequences, motivating the following definition.

5
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(2.4) DEFINITION. The process (X,: n > 0) is said to be strongly

regenerative if (Xn} is regenerative and the regeneration time

are measurable.

Applications to general state space Markov chains in [191 require

that we weaken the regenerative property somewhat.

(2.5) DEFINITION. The process {X,) is said to be weakly

regenerative of order a if there exist random times Tj such

that:

i) the c-fields H - Fn are r-dependent for some a,-L T

i.e., the a-fields H and H are independent for

j > .i+I,

ii) for n < I and Jo < "' <j,

P1, , 'T. +k) -' B; n 0  "" o+,
n n

- , .., XT I) k B; 'r JO, T~* U++ l

for each B in the product a-field Ek, where

1C - Tn+-T-

(2.6) P O? O 60O. A regenerative process (1,4 is weakly

regenerative of order 0.

6
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Proof. We need only check (2.5) (i). Let A e_ and B, XRk , and

consider

P1( T, ... , +kxr k e1)E A x B; v .J, +1 k)

- Pj(XT, ... , A; t. J)

P .) e ; n+ - k}

- A;

r P((AT2' "' - c B; v k

2T+- 2

"I(T ""' + k )- l  A x 3; T " - j 2 = k} ,

the first and third equalities by (2.1)(1), the second by (2.1)(ii).

An easy induction argument extends the above equation to the class of

rectangles generating (2.5)rii), proving the result. I

We now examine some elementary properties of weakly regenerative

processes.

(2.7) POPOSITION. Let t k be a sequence of real-valued functions

such that fk .l measurable. Then, You a r - 1~ f XT

Is H measurable. Bance, the r.v.'u ( Tn' ): n > I) are

Identically distributed, and s-dependez-.
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Proof. We write Yn as

(2.8) yu" f k+I(X T "'' XT+k I fc-k+l)
k-0 n n

(note that (2.8) is a finite sum for each w c Q), and observe that

each summand in (2.8) is _% measurable, so that Yn is

measurable. I

Certain renewal arguments will demand the following result.

(2.9) flOPOSITION. Suppose that (Xn} is regenerative and that

g c b9', where bE" is the class of real-valued bounded Z".

measurable random variables. Then,

1) E(g(VT 14); T2 - Tl+k) - Ng(VT,4. ) P(- 1 - k)

where I <k<n and V - (X . .).

11) 3(g(Vk~n); T±(k)+l -kJj!

where I(n)-ax(k: Tk n) , nd O<J <n.

Proof. For (i), write

E{g(V Tl+n); T2 = TI+k)

= E(g(V T2+n-k); 1 = k)
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and observe that g(VT2 +nk) is measurable with respect to v'. 2 ja•

the minimal a-field generated by Hi, J > 2. The independence of 1

from this a-field, together with (2.5)(ii), yields (i). For (:i),

k
tak W e b. and decompose on i.(k) as follows:

E{Wg(V ,1 n); T1(k)+1 - k+J)

k k
- X I E{Wg(Vk+n); T T j ;j - 1)-}

J-0 "i
k k
I E{Wg(V (..j) T 1 t; -- k+i-l)

J-0 i-ij Tji+.-i )

Here, W1{T* .;" k+J_1 }  is v A measurable, whereas
1j ,jJ i-o -

g(VT +(nj ) Is v measurable, and the resulting independence
Ti+( i-J+1

proves (i) (use the defining relation for conditional expectation). I

3. Ergodic Theory for Weakly Regenerative Processes

A weakly regenerative process is said to be positive recurrent if

EvI < - and null recurrent otherwise. In the remainder of this

section, we assume that {Xn} is a positive recurrent weakly regen-

eration process.

Before proceeding, we need some notation. Let bE be the class

of bounded real-valued E measurable functions, and let E+  be the

cone of non-negative E measurable functions. For E measurable

real-valued f, put

.. ........ _ ' ] ;'-'. ,.



Tn+l-'
Y n(f) f (Xk)

k-Tn

The following theorem extends Theorem 7 of SMITH (1955) for

cumulative processes.

(3-.1) TMOUXl. Sappoac either that f c+ or f(Ifl) < 

Then,

(3.2) • f(]rkln + XyI(fI/Ev I  &a..

k-OG

Proof. First, observe that by Proposition 2.7, {(Y n(f); n); n > 1)

is an identically distributed r-dependent sequence. For f c E+, the

strong law of large numbers implies that

X
(3.3) Y Y(mrl)k+j(f)/l + EYi(f) a.s.

k-0O

as I , for j - 1, ... , m+1. Averaging (3.3) over J, and apply-

ing the result to both Yj(f) and Yi(l), shows that

(3o4) Yk f)/TA EY 1(f)I/E1  a.s.

10
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The non-negativity of f E+ implies that

(n) n (n)+(3.5) Y (f)/T (n)+ 1 -_ I f(Xk)/ u < I k(f)/ T 'En) .
k-O k-O k-O

Using (3.4) on the end terms of (3.5) yields (3.2) for f c E+. For

f satisfying EYI(Ifl) < -, split f into f+(x) max{f(x),O}

and f-(x) -max{-f(x),O). Since (3.2) holds for f+ and f-, we

obtain

n
(3.6) . f(Xk)/n + (EY1(f +) - 1(f-))Iz .

k-O

If EYI(Ifl) < -, we can combine the expectations on the right side

of (3.6) as EYI(f)/ET I. I

The following example shows that convergence may not occur under

EIYI(f)l < -

(3.7) EXAMPLE. Let {Zk: k > 0) be a sequence of non-negative

independent and identically distributed (i.i.d.) r.v.'s with

EZ0 a W. Put X2k ' Zk, and X2k+= -Zk . Then, T k  2k and

Yk(g) - 0 for g(x) x. But

11
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k Yj(s)/2k - Zk/2k . a EY1(g)/Ev

The convergence of Zk/k to infinity is implied by 1:-0 P(Zk > k)

= a, and the Borel-Cantelli converse.

Let x be the set function on E defined by the formula

T2-1

(3.8) (A) - kE{ I IA(Xk)I *

It is easy to show that x is countably additive and thus a

probability measure. We shall use the notation nf to denote

f f(y) %(dy). The following "representation" theorem for the

"ergodic" measure n is valid.

(3.9) PROPOSITION. If xrf is wil-defined, then

(3.10) sf - EYI(f)/1I1  .

Proof. By definition of %, (3.10) clearly holds for all simple

functions f. For f c bE, f can be uniformly approximated by simple

functions fn such that

iffn -ft sup( fn(x) - f(x)I: x c E) < 1/n

so that

12



- ~ffn + ('f - Y1(fn)/ET) + ETI(f-fn)/E~iI

2ffni< 2/n

and hence (3.10) holds for f e bE. For f eE+, we approximate f

by bounded functions fn increasing to f, and use monotone conver-

gence. For a general f, write f - f+-f-, and observe that (3.10) is

valid for f+ ~a f- I

Consider the sequence of empirical probability meaures defined

by

n
M (A~w) - k 1I A(Xk(w))/ (n+1)

Our next theorem concerns the a.s. weak convergence of Hn(-,w).

(3.11) MREN. Suppose that 3 is. the lorel a-field of a separ-

able metric space R. Then,

M( )-> X(-) &*go

where ->denotes weak convergence of probability measures.

13



Before proceeding with the proof, we need to discuss the notion

of weak convergence. It is known (see BILLINGSLEY (1968), p. 12) that

Pn -> P is equivalent to requiring tht Pn(A) + P(A) for each

A such that P(8A) - 0, where 8A is the boundary of A. For

separable metric spaces, a smaller class of sets A characterizes

weak convergence. Let {n) be a set of points dense in E, and

put B(sn,c) - {y: P(Sn,Y) < e), where p is the metric on E.

Then, observe that 8B(sn,e) c {y: P(sn,Y) - c), and hence, for

fixed n, the boundaries are disjoint in e. Thus, for each n, one

can find a sequence of numbers e 0 such that P(OB(sn,¢mn)) - 0

for all m. Let A(P) be the class of all finite intersections of

sets B(sn, cmn)"

(3.12) LEHM. If Pn, P are probability measures on a separable

metric space K, then Pn -> P Is equivalent to Pn(G) + P(G)

for all G e A(P).

Proof. First, since 8(G 1 n G2 ) (8G 1 ) u (8G 2 ), it follows that

P(OG) - 0 for all G c A(P) and thus Pn -> P implies that

P n(G) + P(G) for all G c A(P). Conversely, observe that for each

x e E and e > 0, there exists m,n such that B(S, n) B(x,c)

and thus Corollary 1, page 14, of [3) applies, completing the proof. I

Note that A(P) - Ui. 1 Ai(P), where At(P) is the class of all

intersections of i sets of the form B(snemn). Since each

Ai(P) is countable, A(P) is countable.

14



Proof of Theorem 3.11. Since A(P) is countable, it follows that

{w: Mn(.,-w) -> -x(-)) is G-measurable, by Lema 3.12.

Furthermore, this set has probability 1, since

P{: Mn (G,w) + %(G) for all G c A()) - I

using Theorem 3.1 and Proposition 3.9. I

(3.13) COROLLARY. Let E be a separable metric space, and let bC

be the class of E continuous functions. Then,

P(W: } f(Xk(w))/n xf, for al f cbC} - I
k-O

Thus, for weakly regenerative processes, one can obtain

simultaneous convergence in (3.1) over a large class of functions,

namely bC (this simultaneous convergence can not be extended to bE,

except when % is atomic).

In addition to strong laws such as (3.1), weakly regenerative

processes also have behavior characteristic of the so-called "renewal

paradox."

(3.14) PROPOSITION. Suppoee either that f e _+ or E cY l (If ) < -.

Then,

15



(3.15) 0 71(k)()a + .Z I 1()/ I..
k-OG

Proof. Tor f e E+, observe that

((n)-  )-1 k+l - 1

k Y±(k) (f)/TL(n) k k 1 Y10) (f)/T (n)k-O k-O JnTk il

1t(n)-I

- z kYk(f)/T() + EIY1 (f)/v 1
k-O

a.s. (to deal with the m-dependence, average as in the proof of

Theorem 3.1). Now, repeat the reasoning of (3.5) through (3.6) to

complete the proof. I

In particular, the "time-averaged" length of the epoch

TI(n)+,- TI(n) is E2 /E-c as in the regenerative case.1(n)-i1 1(n

4. Stationary Regenerative Processes

Associated with every weakly regenerative process is a closely

related stationary process; see BROWN and ROSS (1972) for a discussion

in the regenerative case. We start by proving a strong law for

functionals of the form g(1n, ... , X,+,), where g is a real-valued

16
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R1 +1 measurable function. In preparation for stating the result, we

extend the notation Yn(f) from scalar functions f to functions

g of a vector argument:

Tn+1-I
Yn(g) - I T g(Xk , ... , Xk+L)

n

(4.1) PROPOSITION. Suppose either that g c (EJ+l)+ or

EY 1(jgj) < a*Then,

(4.2) 1 g(X., ... , XIl)/n -o 5Y(g)/Zv 1  a.s.
k-O

Proof. Let Uk a (Xk, ... , Xk.t), and recall that Xk is weakly

regenerative of order m, with respect to some sequence of random

times Tj. It is easily verified that Uk is then weakly regen-

erative, of order m+4, with respect to the same times Tj. The

limit theorem (4.2) is then obtained as an immediate consequence of

Theorem 3.1. 1

The following result shows that weakly regenerative processes

have a "shift Invariance" property.

(4.3) PROPOSITION. Suppose either that g c (Z3t+l)+ or

IJMMSi) < .. Then,

17
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T2-1 2  1

Proof. Since Ulh is weakly regenerative (see proof of (4.1)), we

have that

(4.5) g(Xk, '- Xk+ t)/n + EYIg )  a.s.kT -+j

if g c bE1 4+ . Now, the left-hand side of (4.5) is dominated by

Igl(Tn+1 -Tl)/n, which converges to IgIE 1 . But

E(Tn+ -T, ) / n - De

and hence {(Tn+I-Tl)/n; n > 1) is uniformly integrable. It

follows that the left-hand side of (4.5) is uniformly integrable, and

thus we may take expectations of both sides in (4.5) (see CllUN

(1974), p. 97). Application of (2.5)(11) then proves (4.4) for

g c b(Et+l). A standard approximation argument gives (4.4) in the

general case. I

We now define the associated stationary process Y. For

A c Ea, define the measure P* on E" by the formula

18
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1

P*(A) - Ef I A(Z-kI 1k+l' ..'))1"'
k-T 1

Let Y. be the coordinate projection of Lr onto its n'th

coordinate, for n > 0.

(4.6) ORM. The process (y.: a> 0) Is stationary with

respect to the probability p*.

Proof. It is sufficient to prove that

P{.(Y0 "" Y.) c A) - P{(Yj, ... , + A) for all A A .

But this result follows immediately from Proposition 4.3. I

In this case where {Xn: n > 0) is regenerative, it is

particularly simple to prove that the stationary process {Y,} can

be constructed directly from the {Xn} process, in the following

sense. We assume that (Q G,P) is a sufficiently rich probability

space that it supports r.v.'s 01' 02 independent of ((Xn,Tk):

n,k > 0) with distribution

Pl - k, 02 a J) - -(j - k}/Ev, I{:< t9(i) "
= 1:' - k} and put:

Let fI(k) inf(n > 1: jna " T T(0) +2"

19



(4.7) PROPOSITION. If (Z: n> 0) is regenerative, then the

process {Xaft: k > 0) bas the sie distribution on K_ as

(Yk: k> 0).

Proof. For B c E+19

(4.8) P((Xa, *.., x C+jL B)

* k-I
- I =1 P{Xck).j+ .... 1(k)+j+I) c B) - k}/EC1 .
k-ili-

Now,

(4.9) P{X -(k)+ J ,  .. X I(k)+J+j) B)

" ?((XT, ... . r+J+,E) C B;

• k, ... , -on_ $ k, '- k}

" T4 P{(XT+XTI+J+j) B; - k) P I l

- P{(XT., ... , XTj+) B; IV I k)/P{ I k)

where the second equality follow from (2.1)(1) and (2.5)(11).

Substituting (4.9) into (4.8) and using Fubjiii proves that

20
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P((Xa XI

a' ' "£ "'

k-I
I-I I P( ( X r +

j , ... , +J+) e B; T, k/-I
n=I i-a0 1

" ia0 [+ ((XT +J'0,'IT ,+J +I B; ci "k)/S- I
j-0 k-j+1 1 *' 1

ji0P{(XT 1+it .- T I++. ) e; 1€ > J}/zT I

T2-1

SI j T (XT+j, 0.., x C+j+ j /E'T

proving the result. I

As one might expect, the process (XZ4: k > 0) is regenerative

with respect to the random times -6 - (pl)+' k > 1.

Furthermore, as is easily checked,

(4.10) P (XT-,' . xTj+k) £1; -j " Jo- ""' Vb " JI)

- P{(XT , ... , X I.A) C S; -, = Jot ""9 ' -,-x "jL )

11

where v; - T' -T'. However, the first epoch of (x+: n > 0) has

a markedly different distribution from that of (Xn: n > 0).

Observe that for B e E,+ , we have

21



(4.11) P{(XT,, .. XT1~tx) cB; 6 .+11

- T {Ox(k)+k-I.I, ... , X(k)+kI I
k-1k+k1 } {

i P{(XT k , ""' Xr1+k-1) I ; /k=-t+1 I I- ''

- e_ ..., YT 1 ) £ B; >

This result will prove useful in Section 6, when we shall examine

mixing conditions for regenerative processes. Formula (4.11) also

leads directly to the observation that a stationary regenerative

process {Xn: -< n n } has the same distribution as its time

reversal {Zn: -< < n < .} if and only if for all B c E+,

(4.12) P{(XT +, . T B; -+I

- P{(XT 1, ..., r21 £ B; T1 .- +'} .

5. Total Variation Convergence for Regenerative Processes

By Theorem 3.1 and the bounded convergence theorem, it follows

that

22



k-O

for all f c bE. One of our main goals in this section is to show

that the convergence in (5.1) is uniform over f e bE such that

Ifl < 1, and that, under certain conditions, (5.1) holds without

averaging. Such uniform convergence is equivalent to total variation

convergence of the corresponding measures.

In analogy with Markov chains, we say that a weakly regenerative

process {Xn: n > 0) is periodic with period p if the span of the

distribution of j is p. If the period is 1, then {Xn} is

said to be aperiodic. For g e b(EI), put

v(g;n) - Eg(VT +n) for n > 0

(5.2) TRORI. Let {in) be an aperiodic positive recurrent

regenerative process. Then, there ezist constants Yn 0 such

that

sup -l(g;n) - Eg(T)j - -n
Igi < 1

wbere 3 denotes expectation with respect to P*. If o <in- then

Proof. We start with a renewal argument, namely

23
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(5.3) v~g;n) - -I E{g(v~z.); T2 " T1-Ik} + E{g(v~ +"); T2 > T1+n}
n

"k- E Zg(VT +n-k)] P(Ti W k) + E~g(V T +n); 'rI > a}

-= v~g; n-k) P{. - n-k} + a(g;n)
k-1

when the second equality is by Proposition 2.9 (i). The solution of

this renewal equation is

n
(5.4) v(g;n) - I a(g; n-J) u1

J-0

where u1 - k P( 1 + "' + Tk - J ) (see KARLIN and TAYLOR (1975),

p. 184). The renewal theorem (FELLER (1950), p. 330) asserts that

0

(5.5) v(g;n) + i a(g;j)/E-c
1-0

Note that a(lgj; J) < Igo P{. 1 > J}, so, by Fubini's theorem,

(5.6) [ a(g;) E g(V I {Cj}
J-0 J-0 g IVTI>j}

T2-1

" Ef I g(V)} - E* g(Y)-Er
J-T 1  

1 I

Combining (5.4) through (5.6) shows that

24



(5.7) jv(g;n) - E*g(Y)I

n

IS IP(' >J Iuj-(Er) + Igi P ' > J)jmo jn+1

We now use an estimate of GEL'FOND (1964) for the error in the renewal

theorem, namely

(5.8) u = I/ET + o(n -K)

which is valid under the assumption EvI < -. This implies that

Kx - sup(Iuj - 1/Et I: j > .o(} C)

Substituting this relation in (5.7) yields

Iv(g;n) - E*g(Y)l

< Igi( P{ 1 > 
J ) +Kn 2 )

J>n/2

< IgI(n 1- 1I jK-I P{T 1 > j} + Kn/2)
J>n/2

- Ig(n I C o(I) + o(n
1 -)) I 1gl o(n1- )

the second-last equality because ET( K . I
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Theorem 5.2 considers the time-dependent behavior of Xn for

n > T1. Our next result deals with Xn  over semi-infinite time

intervals with deterministic time origin.

(5.9) PROPOSITION. If (Xn: n > 0) is an aperiodic positive

recurrent regenerative process, then

E( ~v") lV - E*g(y)J

igU(1 + y(O)) P({T,(k)+l - K + IgI y(n/2 ) a.s.,

where y(x) -sup(y(j): J >}z) for x > 0 (put y(x) - 0 for

x < 0).

Proof. Let g = g - E*g(Y), and note that

IE{i(Vk+n) Z6)1

lJEg(Vk.n): Tt(k)+l < j11 + Igi P(j-(k)+ - k > nl.E •

For the fir;it term, we use Proposition 2.9(11) and Theorem 5.2 to

obtain
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E~v(g; n + k - TI(k)+l; TI(k)+1 -k+n_,k)

< IgI E{y(n + k - T1(k)+l); T±(k)+l k <nZ6)

IgI E(y(n + k - TIk)+l); TIk)+l - k < n/2I.i)

+ Igi Y(O) P{ k+ - k > n/21! k

Igi (y(n/2) + y(O) P{TIk)+l - k > n/21k

proving the proposition. I

It should be noted that the asymptotic nature of 7n under

Er < - is inherited by y(x), namely y(x) - O(x 1-).

(5.10) COMOLUaY. (1) If (Xn) is an aperiodic positive

recurrent regenerative process, there exist constants a. + 0 such

that

(5.1) sup Zg(Vn ) - *()
Igi < I

The constants a are dominated by (l+y(O))P(T 1 > n/21 + y(n/2).

(1i) If (E,IE) is a separable metric space, the process

('n. Xu+. ..- ) converges weakly to the stationary process Y in

the product topology on Ia.
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Proof. Part (i) follows immediately from Proposition 5.9. For part

(ii), it is necessary only to realize that for a separable metric

space E, the product field E" coincides with the Borel sets under

the prod~ict topology (see DELLACHERIE and MEYER (1978), p. 9). 1

The periodic case can be reduced to the aperiodic situation

above, without difficulty. If {LX: n > 0) is a periodic positive

recurrent regenerative process with period p, set U0 - (X0 , .. ,

"T-1_
)  and put

U,- (rI+(i-l)p . '', I+ip l )

The process {Ui: i > 0) is regenerative with respect to the random

times T - 0, T 1, -A.n Tn- + n-1/p"

0 ~ n1  W-/p 1 -T

Clearly, the distribution of r - vI/p has span 1, and hence {Ui)

is aperiodic. We therefore imnediately obtain the following

generalization of Proposition 5.9.

(5.12) PROPOSITION. If (XA: a > 0) is a positive recurrent

regenerative process, then there exist constants ba + 0 such that

ak
sup I EleV,)j!ZJ/n -E(Y) I
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These results have immediate applications to general state space

Harkov chains (see p. 8-25 of REVUZ (1975) for definition, notation,

and basic properties). A Markov chain {Un: n > 0), with transition

kernel Q defined on measurable space (E,E), is called Harris

recurrent if there exists a set A e E, an integer k, and a

probability * on (EE) for which

(i) Q{W c A i.o.} 1 for all x

(5.13) k
(ii) Q (x,') > X0(') for all x c A, where X is positive.

In the case where k - 1, ATHREYA and NEY (1978) and NMELIN (1978)

have shown that for each p on (EE) the process (Wn) can be

embedded, with marginal distribution O, in a probability space

(Q,G,Q ) for which {W ) is regenerative. Furthermore, the

regenerative process {Wn}  is positive recurrent if and only if Q

has a unique invariant probability %, in which case % coincides

with that given by (3.18). The basic idea behind the regenerative

embedding is to "split" Q as

(5.14) Q(x,.) - X$(-) + (1-X) R(x,-)

over x c A. A transition out of A is distributed with probability

X as #(-) (a regeneration) and with probability I-X as R(x,-).

Proposition 5.9 provides an easy proof of the following result

(see ATHREYA and NEY (1978)).
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(5.15) PIOPOSITION- f (WO) is a Harris chain with Invariant

probability %, and if k - 1 in (5.13), then

The ~ ul genra covegec results for Harscan a eotindfo

Igl < I P

The general convergence results for Harris chains can be obtained from

(5.15) in a reasonably straightforward way; see ATHREYA and NEY

(1977).

6. Mixing Conditions for Regenerative Processes

We say that a process (Xn) is strong mixing if

(6.1) sup supk JP(AB) - P(A) P(B)( - a(n) .0

B C - k+

The process {X,) is uniformly strong mixing (or #-mixing) if

(6.2) sup sup k IP(AB) -P(A) P(B)j < 0(n) P(A)

-k4+n

where 4(n) * 0.
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(6.3) MORE& (1) If (XU) Is an aperiodic positive recreat

regenerative process, then US) in strong alzv4g

(i1) If, In addition to the above hypotheses, there ezists

c(x) +. 0 such that

"(71 P(k)> - k > Uiji!) S cu)as.

kk

Proof. For (i), let W be a nonnegative bounded kmeasurable

r-v., and take g c bE6. Then, by Proposition 5.9,

(6.4) EWg(V kft) -E(WE(g(V k-*)~}

<IWI IgI ((l+y(O)) P{T jtk+-k > n/2) + y(n/2))

Of course,

F(6.5) IrWg(V.) - EWEg(V+)l

5 EW(V+,) + EWlEg(Vk.n) -E*g(y)I

<. IWg(Vk+n)I + IW!Ia
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the second Inequality by (5.11). Using (6.4) and (6.5), it is clear

that the proof of (6.3)(1) is therefore complete, provided that w can

show that

P(Twk+l -k > n) +O as n 

uniformly in k. Now, observe that

(6.6) P{T 1()1- k > n)

<(T > k+n) + P{ T1(k)+1 k > n; 1(k) > 0)

The second term can be written as

k
(6.7) 1 P{T 1(k)+1 - k > n; T J)

J-1

k
M J1 P{T it(Tl~k-j) ~1 (T I+k-) >n; T J

k
M J, P(T t(T~kj)+l -(T 1+k-j) > a) P{T1  J)

< malt P{T I(T.J + - (T I+J) > fl)

The final term in (6.7) is amenable to a renewal argument, which shows

that

(6.8) P( TJ(T +1)- (T I J) > n) k f0 P(r > n+j-k) uk
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where the right-hand side of (6.8) converges to 1i00 P{51 > kn}/I-c"

The boundedness of P(Ti > n+j-k) allows us to use an argument

similar to that of Theorem 5.2, to prove that (6.8) converges to 0

n . ., uniformly in J, completing part (i).

For (ii), write

(6.9) IrWS(vk+,) - E g(Vk+n) j

< IE{W(g(Vk.n)j!P)I + EIIE(Vkn) -E*g(Y)I

< Ugi EW((1+.y(O)) c(u/2) + y(n/2) + aU)

We now examine the form of the strong mixing constants a(n) for

the stationary regenerative process {Yn: n > 0).

(6.10) PROPOSTION. If (Xn) is an aperiodic positive recurrent

regenerative process with K1 then {In) is strong uizing

with constants a(n) - o(nl- ).

Proof. Let Vk ' (Tk' yk+l' "'.) and observe that Eg(Vk) k Eg(V O)

= E*g(Y), by stationarity. Thus,

EWg(Vk+n) - EWE(Vk+ i)

< nWn ngn (l+y(O)) P{Ti(k)+l - k > n/2) + y(u/2)
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(see (6.4), (6.5), and (4.10)). We now use (6.6) to bound

P(T(' - k > n/2}, noting that
.t(k)+l

Pj6> k+n) < 1 (C > i)/'C1 j n I-C i W-l P{'r1  J)ET
j-n j-n

. o(nlIn )  .

For the second term in (6.6), we recall that un = 1/Er + o(nl-K)

and apply the argument of Theorem 5.2 to (6.8); the resulting rate of

convergence bounds the second term through (6.7). I

As in Section 5, Markov chains provide an interesting class of

examples.

(6.11) PROPOSITION. Set (Mn: n > 0) be a Harris chain, possessing

an inariant probability %, which Is aperiodic as a Markov chain.

Then, (W.) is strong mixing for arbitrary initial distribution i.

Proof. Let A and k be as in (5.13). Because {Wn: n > 0) is

an aperiodic Markov chain, it follows that Wnk visits A

infintely often Q a.s. (see Lemma 2.1 of [271), and hence (W nk)

is regenerative under a measure QP consistent with QV. Assuming

that the regenerative process {Wnk) has period p, let Xn =

{Wns; n > 0) where s - pk. The skeleton X. is a positive

recurrent regenerative process, since Wns is a Harris chain with
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invariant probability, and therefore, by Theorem 6.3(i), strong mi-

ins. Let u -as+J, n- be+, where 0 < J, I < s and a < b and

consider

(6.12) Q IL(BC) - Q IL(B) Q (C

where B e _(wo, ..., WE) and C e _(Wn , wn 1 , ... ). Using the

Markov property of W., it is easily seen that these two sub-o-

fields are conditionally independent given B(W(a+l ), Wbs) (see

Theorem 45, p. 36, of 112]) and hence

Q% {BCIW(a+l)s } Ws)

haa

(using the Markov property of reversed chains). Thus, (6.12) can be

written as the covariance between functions of Xa+1  and Xb, and

so the strong mixing result for (Xn) can be directly applied to

obtain (6.1) for {Wni. Furthermore, it is clear that the mixing

constants for (W.} are given by a(n/s), where a(n) are the

constants for (Xn}. I

Proposition 6.11 gives a regenerative process proof of Theorem 1

of DAVYDOV (1973). Furthermore, our approach allows us to obtain
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estimates for the strong mixing constants for stationary aperiodic

Harris chains. In particular, by applying Proposition 6.9 and 6.10,

1-K K
we see that a(n) - o(n-), provided E 1 < -, where cI is a r.v.

with the distribution of the Athreya-Ney-Nunmelin regeneration time.

It is also worth applying our regenerative results to Doeblin

recurrent Markov chains. A chain {Wn) is said to be Doeblin if

there exists c > 0 and a finite nontrivial measure v such that

v(B) < -> Q k(x,B) < 1-e

for some k (see DOOB (1953) for a complete discussion). If E is a

separable a-field (i.e., countably generated) and if {Wn) has a

single ergodic set (see p. 209 of [141 for definitions), then (Wn}

Is Harris recurrent (see Lenma 4.6 of [181).

(6.13) PROPOSITION. Let (W.) be an aperiodic Doeblin chain with

single ergodic set, and assume that 9 Is separable. Then, (Wn)

is uniformly strong mixing with uniform mixing constants #(n) -

o(n - k), for any k > 1.

Proof. We apply Lema 4.7 of [181, which shows that there exists m

such that

sup Q1 (AT>ma <1
x3 E
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where A is as in (5.13). Then, using the argument of Theorem 4.1 of

[I] shows that

(6.14) sup Ex(T±(k)+l - k > n) _ O(pn )

xc E

when 0 < p < I and the Ti's are the regeneration times of Wns

(see proof of (6.10)). The proof of uniform strong mixing is

completed by using (6.14) in conjunction with the Wrkov property and

Theorem 6.3(11). To obtain the estimates for *(n), one applies

(6.14) to (5.2), (5.11), and (6.9). 1

The above result can also be found in (II (Theorem 2), proved by

a different method.

7. The Central Limit Theorem for Weakly Regenerative Processes

Let {Xn: n > 0) be a positive recurrent weakly regenerative

process, and let f be a real-valued E-measurable function. We now

wish to investigate the behavior of "normalized" sums of f(Xn)'s.

Assume that tJfJ < - (9 given by (3.8)), and let

(X) - (Xn)-%f.

(7.1) TMiOM. Let (Xe) be a positive recurrent weakly

regenerative pro se and suppose that 0 < o2(TI(Il)) < .. The,
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(7.2) k f(&)/,I 2  _> 1(0, N )

where

2 R-9 M a2 (TI(f ) ) + 21 cov(y,(f), Yk.1(f))
k-I

Proof. On (T1 < n}, we can write

n 1/2 1/2 I(n)-1 / /
(7.3) 1 f(xk)Inl12 Y 0()/n/

2 + Z Y) k )/n 1 + R (f)/n/

k-O k-i

where

() - 1 f(xk)/n'
12

k-T (n)

The term Rn (f) can be bounded as follows:n

1//2

(7.4) fan(f)j <max{Yk(lf): 0O_<k < .<irI4)/n I/

. max max(.,z .)k+j(Ii-): 0 < k < nm-)/nI/2

0 < j <m4+1

Since (Y(jp is u-dpendent, it follows tht {(~1+)k+j(IfI):

k > 0) is an i.i.d. sequence of r.v.'s with common finite variance.
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Thus, by the Borel-Cantelli lemma,

Y (M+)k+j(I f1)/k + 0 a.s.

Hence, for each c > 0, there exists n(e) such that for all

k > n(e),

So, for k > n(£)

lr/ max Yi(ml)+J(I f)/k

0 < i < n(k)

+ lim max Y i(m4l)+j(Ifl)/i /

n(e) < i < k

<

and thus IR(f)I 0 a.s. We now use a technique employed by CHUNG

(1967) to deal with the second term in (7.3). Let

b(k) max(,j: J(m+l) E' 1 _< k}
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and put k' b((I-c 2 )n), k* = b(n), k" - b((1+e 2 )n) for e > 0.

Since 1(n)/n - 1/Exj a.s. (this can be proved by averaging as in

(3.3)), it must be that there exists n(e) such that

A - {k'(m+l) < 1(n)-i < k"(m+l) for all n > n(e)}

has probability at least 1-c. On A,

ytn f)i -k*(m+l)

j Yi ( i) i i M

m '

< 2 1 max Y kp(M+1)+iCM)I
i- k' < J < k" pk'

The Kolmogorov inequality applies to each individual "max" term, and

thus it follows that

ma 1/2
I oYp(ml)+i()I/k*

kI' <J <k" puk

in probability. Hence,

1(n)-i k*(m+l)
I ' Y1(f -W Y (f))/k*1'2  0 0
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in probability. Applying the central limit theorem for u-dependent

sequences (see [31, p. 174) shows that

k*(a+l)
1 Yj(f)/k*1/2 -> N(0a 2 ET1 (m+I))

The proof is finished by using the "converging-together" lemma (see

p. 25 of [31) and observing that

k*/n - 1/(m+l) E- . I

It is worth pointing out that in the regenerative case, Chung's

proof (see p. 100 of (61) shows that the central limit theorem (CLT)

holds under the slightly weaker assumption that 0 < a2(Y M) <

Theorem 7.1 also leads to a new CLT for Harris chains, in light of the

fact that Harris chains are weakly regenerative (see [191, Proposition

4.11). For other versions of the Harris chain CLT, see OREY (1959),

COGBURN (1970), and MAIGRET (1978).

As is well known in stationary process theory, the variance

constant a2  for partial sums of the form (7.2), coming from a

stationary process {Yi}, is generally given by

2m
(7.5) O2(Cy 0)) + 2 cov((Yo), 0 fY 0

k41
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Let {Yj} be a stationary positive recurrent regenerative process,

and observe that, under certain moment conditions, Theorem 7.1

applies. This leads one to subspect tLhat (7.5) i~s e~qual to

2a (Y 1(f)?Y'TV Indeed, this kind of result is frequently implicitly

used in constructing consistent variance estimates for stationary

processes as they arise, for example, in simulation; see FISHMAN

(1978), p. 262.

(7.6) PRPOSITIOI. Suppose that (Z.~) is a positive recurrent

aperiodic regenerative process vith 0 < e 1 (f) < -

311f(X)1 2+5 < -. Then, if the series (7.5) converges absolutely to a

positive constant,

(7.7) arfY)) + 2 cov(f(T 0 ), f(yk) a T())ZC-o k-i k

Proof. By Proposition 6.10, the process (Y.) is strong mixing

with mixing constants az(n) -o(n-2). Then, since

(1+6)/(2+8) > 1/2, it follows that

I a(n) (1+6)/(2+6) <
n-i

Furthermore, since the left side of (7.7), call it aV, converges

absolutely,
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2(n

k-O

(see (31, p. 172), and thus Corollary 5.3 of HALL and HEYDE (1980)

applies, yielding the CLT

n

I f(Y" )/ /2.> N(O,a2
k-O

On the other hand, as discussed above,

n f(y) / 2 . > N(O, a2)

k 10 f( )n2)

2 .2where 02 o (Yt(f))/El, proving the result. I

A corresponding theorem for the periodic case can be obtained by

considering the process (Ui} (see remarks following Corollary

5.10). Note that all countable state positive recurrent Markov chains

are positive recurrent regenerative processes. Proposition 7.6, in

such a context, yields a result complementary to Theorem 3, p. 102, of

CHUNG (1967).

43



8. A Splitting Property of a Certain Class of Regeneration Times

A random time T is said to be a splitting time for the process

{Xn: n >O} if for each n > 1,

(8.1) {T - n) - C n D a.s.

where Cn c F!n, D e_4 (see JACOBSEN (1974) for details). Our main

goal in this section is to show that for a reasonably general class of

Markov chains, a strong regenerajion time must necessarily be a

splitting time. This, in turn, will allow us to totally characterize

the nature of the strongly regenerative chains in the class.

We start by assuming that (Xn} is a Markov chain taking

values in a measurable space (E,E), where E is the class of Borel

sets of the complete, separable metric space E. We shall further

require that the transition kernel Q of the process (Xn) is

X-continuous in the sense that Q(x,-) is absolutely continuous with

respect to some fixed a-finite reference measure %(o), for each x

in E. Hence, by Proposition 5.1 of [291, one may write Q as

Q(x,B) - f q(x,y) X(dy)
B

where q is jointly measurable in the product a-field E x E.

As is well-known in Markov chain theory, the process {Xn} may

be represented as the measurable coordinate projections on the product

space 0 E x E x ... Then, for each & on (E,E), the chain
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Xn  induces a probability Op on 0 corresponding to the chain

n-I
started with initial distribution p. Putting i , E equal to the

a-fields generated by the first n coordinates and the remaining

coordinates, respectively, we let Q (dx), Q2(dy) be the marginal"

measures defined by

(8.2) Q 1(A) Q ({(X0  X*~Z1 ~ Al, A n-

Q 2(A) - Q ({(X , ... ,X ) B), BE

Our first result is the following.

(8.3) PROPOSITION. If {Z: n > 0) is X-continuous, then there

exists a jointly measurable function f(x,y) such that

%(dx, dy) - f(xy) '(d) Q(dy)

Proof. Let Qz(dy) he the probability on 0 associated with

X0 - z. Then, the Markov property of {Xn} allows one to write

Q (dx, dy) mf X(dz) I(dx) q(xz) Q,(dy)
P E O

Thus, for a rectangle A x B (A € , B e ), we have, by Fubini,
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Q (A x B) - f X(dz) Q (B) f Ql(dx) q(x,z)

- f X(dz) QZ(B) f Q1(dx) q(x,z) I{h(z)>O}I A

where

h(z) - f Q I(dx) q(x,z)
En-i

Hence, for any rectangle A x B,

(8.4) Q(A x B) -Q(A x B)

where Q* is defined by

(8.5) Q*(dx, dy) -f X(dz) Qz(dy) Q 1 (dx) q~xs ) 'hh,.) I
E

This measure ie clearly absolutely continuous with respect to

(8.6) f X(dz) Q (dy)Ql(dx) h(z) - Q 1(dx) Q 2(dy)
E.

Since the rectangles generate the product a-field on 0, it

follows, by (8.4), that , - QJ. Thus, the tadon-Nikodym theorem,

applied to (8.5) and (8.6), concludes the proof. I
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(8.7) TORS(. Lot Tk be a regeneration tie for a ).-costimm~us

Markov chain. Then, a~se,

-I (. 1cQ~ ~ " ) > 0 0> 0

Fj~k. I

Proof. Let P* be che probability onl (E EE) defined by

(8.8) P*(A) - V c A; T, n)IQ, {Tk - n

where V *).Note that if A ,- B cmthen

(8.9) QJ {T -n) P*(AB) - Q ((x0  x*, A, V~ B; T~-n

- Q{((X0 , ... m-1) A; T ki n) Q(V T c B

by the regenerative property. But
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QV% e B; T.k fljm%(V B) QLTkmfn)

and thus (8.8) becomes

(8.10) P*(AB) - P*(A) P*(B)

Let P*, P* be the marginal measures of P* on n-

respectively, and observe that (8.10) implies that P* equals the

product measure P5 x P* on an algebra generating E .Thus,
1 2

(8.11) P*(C) - ff(f IC(i'y) PtI(dx)) P2*(dy)

Now, Pkt I(P1  and P*2 (P 2  where P1. P2  are the marginal measures

of P on ~ Q en ht is absolutely continuous with

respect to Q2)- Hence, by the Radon-Nikodym. theorem,

P~i(dx) h I Wx P 1(dx)

2~dx h2(x) P2(dx)

for appropriately measurable hi and h2. So, from (8.11), we get

(8.12) Pv*(C) -f if I C(x,y) h 1(x) h2(y) P2 (dy)) P,(dx)

Proposition (8.2) then shows that
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(8.13) P'(dx, dy) - f(zy) PI(dx) P2(dy)

We now use the fact that P (P', so that

(8.14) P*(dx,dy) - h(x,y) P'(dx, dy)

Combining (8.12) through (8.14) proves that

h(x,y) f(x,y) - h1(x) h2(y)

P1 x P2  a.s. The absolute continuity of P with respect to P1 x P2

gives

(8.15) h(x,y) - h () h2 (y)/f(x,y)

P a.s. (we interpret the quotient as zero if the denominator

vanishes). Nov observe that

h((x 0 ,  ..., Xn-1) - P(Tk - ni41 a.s.

h(Xo' "", " PTk"n- I a.s.

h2 (Vu) .- -PI{. n.i..

Thus, (8.15) proves the theorem. 1

49

. ... I~_ I - =. .. I



Equation (8.16) can be used to characterize the class of strongly

regenerative X-continuous Markov chains.

(8.17) XMUROR Let ({n) be a X-continuous Markov chain, with

transition kernel Q, taking values in a complete separable metric

space. Then, the folloing are equivalent:

i) (Xnj is a strongly regenerative process under initial

distribution p.

ii) there exist sets A,5 c K such that Q((X X) A x BIL n-Pu

i.o.} - I and

Q(x, 3 nC) - 4(c) Q(x,3)

for all xc A and C c 3, were # is a measure a (3,3).

Proof. We first prove that (i) implies (ii). Select n so that

O (T2 =n) > 0, let g c bE, and consider

(8.18) E {Zg(X T2  U

50

.. _ _ _ _ _.:



where Z is an arbitrary bounded function measurable with respect to

.- I -_(XO, ... , X . By the Markov property and (8.16), (8.18)

can be written as

(8.19) E {zg(x) 1r Ir)
1 12

- E {ZI r g(X ) h(Xn)}

r n n
= {Zrl E (g(Xn) h(Xn)1X1 ~)}

- E{Z Irl(Qgh) (X n_)}

where h(Xn) n P(r2IXn}, and Qf is defined, for f c bE, by the

formula

(Qf)(y) f f f(z) Q(y,dz)

On the other hand, the regenerative property dictates that (8.18) is

equal to
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(8.20) (Z; T2 - n) Eg(X )

- Ez(Z Ir h(Xn ) E g(Z2)

- E(Z Ir (Qh)(Xn_i) E g(XZ2)

It follows that on rl, and hence on {T - n),

(8.21) (Qgh)(XT 2i - (Qh)(XT 2i) E g(XT2)

Q% a.s., for g c bE. Now, E is separable, so it is generated by

a countable algebra C1, C2, ..... By (8.21), Q (A) - Q (T2 
= n),

where

A - {(Qgh)(X_ (Qh)(X ) E g( ) for g - IC for all k}
21 2- 2 k

and thus for v a.e. x

(8.22) (Qgh)(x) - (Qh)(x) E g(XT2)

simultaneouly over all g c bE, where v(dx) - Q (T2_1 c dx; T2 - n).

Let B - (y: h(y) > 0}, and observe that if g(y) - IB(Y) g(y), then

(8.22) gives

(8.23) (Qg)(x) - (Qh)(x) E g(XT2 )/h(XT 2

Letting r (dy) P XT2 dy}, we see that (8.23) yields
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(8.24) Q(x,dy) - c x -(dy)/h(y) for y c S

where cx is a constant. Let O(dy) - c.i(dy)/h(y), where c is a

normalization which makes 0 a probability. By (8.24), we have

(8.25) Q(x, c n B) - cx O(C)

where cx  c /c. Putting C equal to B reveals that c x Q(x,B).

Finally, recall that, by absolute continuity,

v(dx) - k(x) Q{ 2i c dx)

Putting A - {x: k(x) > 0), we see that

Q {(XT _1, XT c A x B) > 0

S 2 2

and thus

( ((xn- l , n A x B i.o. - I

finishing the proof of (i) implying (ii).

For the converse, let To - 0 and put

Tn+1  inf(k > Tn +1: (Xk_1, Xk) c A x B)

For Z bG , g £ bE*, the iHarkov property proves that
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(8.26) E{Z I g(Vk); T, M k)

- E{z 1 g(Vk); Xk_l c A, Xk c B)

- E{Z1 Exkl {g(VI); X1 I B); Xk_l , A)

= EZ 1{ZI xk- x c B); Xk i c A) E¢{g(V0))

- E{Z 1 ; T1 - k) EO(g(V0 )) .

Put ZI - 1 in (8.26) and sum over all k in (8.26); this shows

that E {g(V0 )) - E {g(V T)), and yields the independence of H and

"Z=1 -4" An inductive argument proves that the entire collection 1%

is independent. For the identically distributed property (2.1)(i),

repetition of (8.22) for Tn proves that for all n > 1,

E {g(V 0)} E E{g(VT  .

In particular, setting

g(v) - It(v0 , ... , Vk-) IA(vk-) IB(Vk)

shows that

E {(XT , ... XT +k-1 ) C C; n k)
n a

have a common value, proving (2.1)(ii). I
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This theov' shows that if a %-continuous Markov chain is

strongly regenerative, then one can choose the regeneration times to

be stopping times with respect to the process fields. This result

extends, in a certain sense, to Harkov chains that are weakly

regenerr-ive; see 1191. For some related results on splitting times

for countable state Harkov chains, we refer the reader to JACOBSEN and

PITMAN (1977).
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k process (Zn: n > 0) is said to be weakly regenerative of order

I if there exist random times {Tk: k > 1) such that the random "tour"

(Tk+I-Tk, 'Tk, --., XTk+ 1.) are identically distributed and u-dependent;

this concept generalizes the notion of regenerative process in which m

equals zero, and turns out to have useful simulation application. We show

that such processes obey strong laws of large numbers and central limit

theorems, and that the associated empirical measure converges weakly, with

probability one, to a limiting "ergodic" measure %, which captures all th&

steady-state information inherent in the process (Xn). For the case in

which (Xns is regenerative; we study total variation convergence

problems associated with n. As a result, we are able to obtain general

conditions under which regenerative processes are strong mixing and

uniformly strong mixing-extimates for the mixing constants are also given.

Finally, we consider the case in which the random times Tk  are measur-

able with respect to the process fields generated by a regenerative Markov

chain {Xn} satisfying a general continuity-type condition. In this

case, we are able to totally characterize the form of such a chain's

transition kernel.
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